Deriving Safety Cases from Machine-Generated Proofs

Nurlida Basir and Bernd Fischer Ewen Denney
ECS, University of Southampton SGT, NASA Ames Research Center
SO171BJ, UK Mountain View, CA 94035, U.S.A
(nb206r, b.ti scher) @cs. sot on. ac. uk Ewen. W Denney @asa. gov
Abstract

Proofs provide detailed justification for the validity ofaghs and are widely used in formal
software development methods. However, they are often orapd difficult to understand, because
they use machine-oriented formalisms; they may also bedt@sassumptions that are not justified.
This causes concerns about the trustworthiness of usinggigroofs as arguments in safety-critical
applications. Here, we present an approach to developysadses that correspond to formal proofs
found by automated theorem provers and reveal the undgrygumentation structure and top-level
assumptions. We concentrate on natural deduction prodfsfamw how to construct the safety cases
by covering the proof tree with corresponding safety cazgrfrents.

1 Introduction

Demonstrating the safety of large and complex softwarensive systems requires marshalling large
amounts of diverse information, e.g., models, code or nmasttieal equations and formulas. Obviously
tools supported by automated analyses are needed to thiklproblem. For the highest assurance
levels, these tools need to produckagceable safety argumetitat shows in particular where the code as
well as the argument itself depend on any external assungpliot many techniques commonly applied
to ensure software safety do not produce enough usableneédee., justification for the validity of their
claims) and can thus not provide any further insights orments. In contrast, in formal software safety
certification [3], formal proofs are available as evideridewever, these proofs are typically constructed
by automated theorem provers (ATPs) based on machinetedi@alculi such as resolution [10]. They
are thus often too complex and too difficult to understanadabse they spell out too many low-level
details. Moreover, the proofs may be based on assumpti@isath not valid, or may contain steps
that are not justified. Consequently, concerns remain aling these proofs aggumentgather than
just evidencen safety-critical applications. In this paper we addrésssé concerns by systematically
constructing safety cases that correspond to formal pfoafsd by ATPs and explicitly highlight the use
of assumptions.

The approach presented here reveals and presents théspooolerlying argumentation structure
and top-level assumptions. We work with natural deductiB)(proofs, which are closer to human
reasoning than resolution proofs. We explain how to consthe safety cases by covering the ND proof
tree with corresponding safety case fragments. The arguiménilt in the same top-down way as the
proof: it starts with the original theorem to be proved asttigegoal and follows the deductive reasoning
into subgoals, using the applied inference rules as stemtég derive the goals. However, we abstract
away the obvious steps to reduce the size of the construafety £ases. The safety cases thus provide
a “structured reading guide” for the proofs that allows agerunderstand the claims without having to
understand all the technical details of the formal proof nivaery. This paper is a continuation of our
previous work to construct safety cases from informatioltected during the formal verification of the
code [2], but here we concentrate on the proofs rather ttemdtification process.

(nb206r,b.fischer)@ecs.soton.ac.uk
Ewen.W.Denney@nasa.gov

Deriving Safety Cases from Machine-Generated Proofs Baischer and Denney

2 Formal Software Safety Certification

Formal software safety certificationses formal techniques based on program logics to showhbat t
program does not violate certain conditions during its akea [3]. A safety propertys an exact char-
acterization of these conditions, based on the operatsmrabntics of the programming language. Each
safety property thus describes a class of hazards. They gmégderty is enforced by safety policyi.e.,
a set of verification rules that take initial set of safetyuiegments that formally represent the specific
hazards identified by a safety engineeér [8], and derive a rumiiproof obligations. Showing the safety
of a program is thus reduced to formally showing the validitythese proof obligations: a program is
considered safe wrt. a given safety property if proofs ferd¢brresponding safety proof obligations can
be found. Formally, this amounts to showibBgJ A = P = C for each obligation i.e., the formalization
of the underlyingdomain theory Dand a set oformal certification assumptions éntail a conjecture,
which consists of a set of premisBghat have to imply theafety condition C

The different parts of these proof obligations have diffitdevels of trustworthiness, and a safety
case should reflect this. The hypotheses and the safetytimmmdre inferred from the program by
a trusted software component implementing the safety yo#iod their construction can already be
explained in a safety casel [2]. In contrast, both the domfa@ory and the assumptions are manually
constructed artifacts that require particular care. Itipaar, the safety case needs to highlight the use
of assumptions. These have been formulated in isolatiohdgdfety engineer and may not necessarily
be justified, and are possibly inconsistent with the domiagoty. Moreover, fragments of the domain
theory and the assumptions may be used in different contsatthe safety case must reflect which of
them are available at each context. By elucidating the reagdoehind the certification process and
drawing attention to potential certification problems réhis less of a need to trust the certification tools,
and in particular, the manually constructed artifacts.

3 Converting Natural Deduction Proofs into Safety Cases

Natural deduction [6] systems consist of a collection oigpmoiles that manipulate logical formulas and
transform premises into conclusions. A conjecture is pndvem a set of assumptions if a repeated
application of the rules can establish it as conclusion.elHer focus on some of the basic rules; a full
exposition of the ND calculus can be found in the literati@iie [

Conversion Process.ND proofs are simply trees that start with the conjectureg@imven as root, and
have given axioms or assumed hypotheses at each leaf. Eadbaiaode is recursively justified by the
proofs that start with its children as new conjectures. Tdges between a node and all of its children
correspond to the inference rule applied in this proof stéy proof tree structure is thus a representation
of the underlying argumentation structure. We can use titgspretation to present the proofssadety
caseq[7], which are structured arguments as well and represeniinkage between evidence (i.e., the
deductive reasoning of the proofs from the assumptionsaadénived conclusions) and claims (i.e., the
original theorem to be proved). The general idea of the asime from ND proofs to safety cases is
thus fairly straightforward. We consider the conclusioraagoal to be met; the premise(s) become(s)
the new subgoal(s). For each inference rule, we define aysedise template that represents the same
argumentation. The underlying similarity of proofs andesafcases has already been indicated in [7]
but as far as we know, this idea has never been fully exploregten been applied to machine-generated
proofs (see Figurel 1 for some example rules and templatese, Me use the Goal Structuring Notation
[7] as technique to explicitly represent the logical flowled fproofs argumentation structure.

Implications. The implication elimination follows the general patterreshed above but in the in-
troduction rule we again temporarily assuieas hypothesis together with the list of other available

2

Deriving Safety Cases from Machine-Generated Proofs Baischer and Denney

H|= (A=B)
»
: Suppose premise J1: {A} can be used reduce goal to new
B o 4 A=1RB - is true (=i) gfoh)épgthesis to subgoal (=€)
A=B B !
HU{A} =B ‘ H = (A=B) ‘ ‘ HEEA ‘
=>-Rules

Safety Case Templates for =>-Rules

Use implication to

e tes
. Show for an T Show for all
Iy) arbitrary - kisan domain J1: x can be
A4 [t\'f ‘\} ps vx-A Ly element of the arbitrary. elements (CJe) replaced by t,
— -1 V-2 domain (i) fresh obiect
x-A Al /x]

Safety Case Templates for O-Rules

Figure 1: Safety Case Templates for Natural Deduction Rules

hypotheses, rather than deriving a proof for it. We then @edcto deriveB, anddischargethe hypoth-
esis by the introduction of the implication. The hypothe&isan be used at given in the prove Bf
but the conclusio\ = B no longer depends on the hypotheA&iafter B has been proved. In the safety
case fragment, we use a justification to record the use ofythethesisA, and thus to make sure that the
introduced hypotheses are tracked properly.

Universal quantifiers. The ND proof rules for quantifiers focus on the replacementhef bound
variables with objects and vice versa. For example, in tmaihtion rule for universal quantifiers, we
can conclude the validity of the formula for any chosen dormedementt,. In the introduction rule,
however, we need to show it for an arbitary but fresh olfjefthat is, a domain element which does not
appear elsewhere i, A, or the domain theory and assumptions). If we can derive af prfod, wherex

is replaced by the objett, we can then discharge this assumption by introductionefjtrantifier. The
safety case fragments record this replacement as justificathe hypotheses available for the subgoals
in theV-rules are the same as those in the original goals.

4 Hypothesis Handling

An automated prover typically treats the domain thddmgnd the certification assumptioAss premises
and tries to derivé\ (D UA) A P = C from an empty set of hypotheses. As the proof tree growsethes
premises will be turned into hypotheses, using-theintroduction rule (see Figufé 1). In all other rules,
the hypotheses are simply inherited from the goal to the galsg However, not all hypotheses will
actually be used in the proof, and the safety case shouldidtiglthose that are actually used. This is
particularly important for the certification assumptiole can achieve this by modifying the template
for the =- introduction (see Figurel 2a). We can distinguish betwéenhlypotheses that are actually
used in the proof of the conclusion (denotedAy...,Ay) and those that are vacuously discharged by
the =- introduction (denoted b} + 1,..,A,). We can thus use two different justifications to mark this
distinction. Note that this is only a simplification of theepentation and does not change the structure
of the underlying proof, nor the validity of the original dodt is thus different from using aelevant
implication [1] under whichA = B is only valid if the hypothesis A is actually used.

In order to minimize the number of hypotheses tracked by #fiety case, we need to analyze the
proof tree from the leaves up, and propagate the hypothesesds the root. By revealing only these
used hypotheses as assumptions, the validity of their uderiving the proof can be checked more easily.

3

Deriving Safety Cases from Machine-Generated Proofs Baischer and Denney

Hypothesis has_unit(float_7_0Oe_
minus_1,ang_vel) is valid

Conclusion has_unit(float_7_0e_
minus_1,ang_vel) is valid

A
1

‘ H|= A .OAOAxD..Ay=B ‘

J1: {A1,..,A} used to
prove B

J2: {Ak+1,...,An} ot
used to prove B - - .
Hypothesis is built by using | ! The conclusion to be

‘ ang_vel_7_0Oe_minus_1_rule proved is an external

Argument over
establishment of
hypothesis

J1: The
conclusion
is valid if the
hypothesis
is valid

Argument over
Muscadet
stop_hyp_ rule

Suppose premises
{A1,..,A} are true
(=)

from the valid axiom hypothesis

‘ HU {As..Ad |= B

(Axiom)
ang_vel_7_0
e minus 1

a) b)

Figure 2: Hypothesis Handling

In our work, we also highlight the use of the external cedificn assumptions that have been formulated
in isolation by the safety engineer. For example, in Figloelt2e hypothesis hasnit(float 7_.0e_minus 1,
angvel), meaning that a particular floating point variable esgnts an angular velocity, has been speci-
fied as external assumption. This is tracked properly in #ifiety case, and its role in deriving the proofs
can be checked easily.

5 Proof Abstraction

We have applied our approach to proofs found by the Musc@®Je¢hgorem prover during the formal
certification of the frame safety of a component of an atétadntrol system as an example. Muscadet is
based on ND, but to improve performance, it implements &tadf derived rules in addition to the basic
rules of the calculus. This includes rules for dedicatecabtyuhandling, as well as rules that the system
builds from the definitions and lemmas, and that correspbadpplication of the given definitions and
lemmas. While these rules make the proofs shorter, thajelaumber makes the proofs also in turn
more difficult to understand. This partially negates thejiogl goal of using a ND prover. We thus
plan to optimize the resulting proofs by removing some oflibek-keeping rules (e.g., retuproof)
that are not central to the overall argumentation struct&@ieilarly, we plan to collapse sequences of
identical book-keeping rules into a single node. In gendravever, we try to restructure the resulting
proof presentation to help in emphasizing the essentiabfpsteps. In particular, we plan to group
sub-proofs that apply only axioms and lemmas from selecéets @f the domain theory (e.g., ground
arithmetic or partial order reasoning) and represent themsangle strategy application. Figltte 3 shows
an example of this. Here, the first abstraction step collafisesequences rooted in G13 and G14, noting
the lemmas which had been used as strategies as justifieationkeeping the branching that is typical
for the transitivity. A second step then abstracts this aasawell.

6 Conclusions

We have described an approach whereby a safety case is usetstasctured reading” guide for the

safety proofs. Here, assurance is not implied by the trugienATPs but follows from the constructed

argument of the underlying proofs. However, the straigitésd conversion of ND proofs into safety

cases turn out to be far from satisfactory as the proofs &jlgicontain too many details. In practice, a
superabundance of such details is overwhelming and upltkebe of interest anyway so careful use of
abstraction is needed![5].

Deriving Safety Cases from Machine-Generated Proofs Baischer and Denney

G12: leq (3, 5) Abstraction > G12: leq (3, 5)
J1: Based on $10: Partial
S10: Partial order o i
order reasonini
reasoning :Lalgsmanbq 9

Abstraction

G12: leq (3, 5)
S10: transitivity_leq

[cisieaws || [ceaca | |
‘

: 1 ! |
‘ ‘ 1 [c13tea@s) | [cialea s |!
' . .
S11: leq_gtl S13: leq_gtl % : [. [i : (af:).m) (afigh)
' J2: Based ' S11: Partial S12: Partial '(33: Based o5 4 g
I [' on leq_gtl, ; order order > onleq_gtl, o
G15: gt (5, 4) G16: gt (4, 3) H g5 4rules | ! reasoning reasoning i| g4 3rules
1 ' 1
I T ' '

:
S12: gt 5.4 S14: gt 43 i R O S

'
v 1 1 SE s2:
i (axiom) (axiom)
s1: s2: ! gt5 4 gt 4.3
(axiom) (axiom) ! -
gt 5 4 gt 4.3 !
i
i

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

J1: Based on
transitivity_leq,
leq_gtl, gt 5_4
andgt 4 3

Figure 3: Abstraction of Proof Safety Case

The work we have described here is still in progress. So farhave automatically derived safety
cases for the proofs found by the Muscadet prover [9]. Thikweomplements our previous worki [2]
where we used the high-level structure of annotation imiezeo explicate the top-level structure of such
software safety cases. We consider the safety case as adpsbwards a fully-fledged software certifi-
cate management system [4], which provides a range of cattdn services such as maintaining links
between different system artifacts and different varsetié informal and formal certificates, checking
their validity, or providing access to explicit audit tailWe also believe that our research will result in
a comprehensive safety case (i.e., for the program beintgiegrthe safety logic, and the certification
system) that will clearly communicate the safety claimy, s&fety requirements, and evidence required
to trust the software safety.

Acknowledgements. This material is based upon work supported by NASA under dsv&CC2-1426 and
NNAO7BB97C. The first author is funded by the Malaysian Gaveent, IPTA Academic Training Scheme.

References

[1] A.R. Anderson and N. BelnagEntailment: the logic of relevance and necessRyinceton University Press,
1975.

[2] N. Basir, E. Denney, and B. Fischer. Constructing a Saf&se for Automatically Generated Code from
Formal Program Verification Informatiotn SAFECOMP’08pages 249-262, 2008.

[3] E. Denney and B. Fischer. Correctness of Source-LeviekpRolicies . InProc. FM 2003: Formal Methods
2003.

[4] E. Denney and B. Fischer. Software Certification and\Bafe Certificate Management Systems (position
paper). Proceedings of the ASE Workshop on Software Certificate jmant Systems (SoftCeMent ;05)
pages 1-5, 2005.

[5] E. Denney, J. Power, and K. Tourlas. Hiproofs: A HieracahNotion of Proof Tree. IProceedings of
the 21st Annual Conference on Mathematical Foundationgsaji@mming Semantics (MFPS X)X¥plume
155, pages 341 — 359, 2006.

[6] M. Huth and M. Ryan.Logic in Computer Science Modelling and Reasoning aboue8ysvolume 2nd
Edition. Cambridge University Press, 2004.

[7] T. P. Kelly. Arguing Safety - A Systematic Approach to Managing Safese€#&hD thesis, University of
York, 1998.

[8] N. G. LevesonSafeware: System Safety and Computdddison-Wesley, 1995.

[9] D. Pastre. MUSCADET 2.3: A Knowledge-Based Theorem Brd®®ased on Natural Deduction. IBCAR
pages 685-689, 2001.

[10] J. A. Robinson. A Machine-Oriented Logic Based on thedeation Principle ACM, 1965.

